Initial In-Vivo Analysis of 3d Heterogeneous Brain Computations for Model-Updated Image-Guided Neurosurgery

نویسندگان

  • Michael I. Miga
  • Keith D. Paulsen
  • Francis E. Kennedy
  • Jack Hoopes
  • Alexander Hartov
  • David W. Roberts
چکیده

Registration error resulting from intraoperative brain shift due to applied surgical loads has long been recognized as one of the most challenging problems in the field of frameless stereotactic neurosurgery. To address this problem, we have developed a 3-dimensional finite element model of the brain and have begun to quantify its predictive capability in an in vivo porcine model. Previous studies have shown that we can predict the average total displacement within 15% and 6.6% error using intraparenchymal and temporal deformation sources, respectively, under relatively simple model assumptions. In this paper, we present preliminary results using a heterogeneous model with an expanding temporally located mass and show that we are capable of predicting an average total displacement to 5.7% under similar model initial and boundary conditions. We also demonstrate that our approach can be viewed as having the capability of recapturing approximately 75% of the registration inaccuracy that may be generated by preoperative-based image-guided neurosurgery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development and Quantification of an Atlas-based Method for Model-updated Image-guided Neurosurgery

Compensating for intraoperative brain shift using computational models has been used with promising results. Since computational time is an important factor during neurosurgery, a prior knowledge of a patient’s orientation and changes in tissue buoyancy force would be valuable information to aid in predicting shift due to gravitational forces. Since the latter is difficult to quantify intraoper...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

Model-Updated Image Guidance: A Statistical Approach to Gravity-Induced Brain Shift

Compensating for intraoperative brain shift using computational models has been used with promising results. Since computational time is an important factor during neurosurgery, a prior knowledge of a patient's orientation and changes in tissue buoyancy force would be valuable information to aid in predicting shift due to gravitational forces. Since the latter is difficult to quantify intraoper...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

A sparse intraoperative data-driven biomechanical model to compensate for brain shift during neuronavigation.

BACKGROUND AND PURPOSE Intraoperative brain deformation is an important factor compromising the accuracy of image-guided neurosurgery. The purpose of this study was to elucidate the role of a model-updated image in the compensation of intraoperative brain shift. MATERIALS AND METHODS An FE linear elastic model was built and evaluated in 11 patients with craniotomies. To build this model, we p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 1496  شماره 

صفحات  -

تاریخ انتشار 1998